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i. Methods for the mechanics of multiphase heterogeneous systems [1-4] are currently 
widely used to describe mathematically processes involved in the mass crystallization of sub- 
stances for solutions and the gas phase. The method of spatial averaging [4] was used to ob- 
tain an equation for the crystal-size distribution function. One of the important character- 
istics of mass crystallization here is the rate of crystal growth v, which depends on the 
hydrodynamic situation in the reactor, the crystal size r, and the supersaturation of the car- 
rier phase s. Three laws of crystal growth have been used most widely in practice: the kinet- 
ic regime, in which the rate v is a function only of the supersaturation, v = @(s); the dif- 
fusive regime, in which v = @(s)/r; the growth regime v = (a + br)~(s) (a and b are con- 
stants) [4-6]. Experimental study of the growth of fixed crystals in a supersaturated solu- 
tion has shown that their growth rate fluctuates broadly for the mean [7]. Growth rate fluc- 
tuations are taken into consideration by the introduction of a diffusion term into the equa- 
tion for the density of the particle-size distribution function f(t, r) [4-6]: 

O--f ~- O(vf)-- O (Dr~  ) (i.i) 
Ot Or Or 

where  t i s  t ime ;  D r i s  t he  p a r t i c l e - g r o w t h - r a t e  f l u c t u a t i o n  f a c t o r .  E q u a t i o n  (1 .1 )  must  be 
augmented by t h e  i n i t i a l  and b o u n d a r y  c o n d i t i o n s  

ll~=o = e(~); (1.2) 

of ( 1 . 3 )  

which determine the initial distribution of the particles according to size B(r) and the rate 
of formation of new crystallization centers J. Due to the smallness of the nuclei ro, we 
will assume ro = 0. It should be noted that in [4-6] nucleation is described as a volume 
source in the form of a Dirac delta function in the initial equation. This is essentially 
equivalent to boundary condition (1.3). 

A common approach to solving such problems is changing over to moment equations [5, 6, 
8], the more so because in practice one is often most interested in the integral characteris- 
tics of the function f(t, r) which describe the change in the mean size, surface, and mass 
of the crystals over time. However, direct application of the moment approach to Eq. (i.!) 
with a constant value of the coefficient D r requires determination of the unknown value of 
f(t, 0). In the moment approach in [6], it was assumed that f(t, 0) = 0 in addition to the 
two natural boundary conditions (i. 3). This situation can be avoided in the following man- 
ner. 

2. We reduce Eq. (l.l),withconditions (1.2), (1.3), to a system of integral and differ- 
ential equations generalizing the familiar Todes relations [8]. We will assume that the crys- 
tals grow in the kinetic regime and that D r = const # 0. Having made the following substitu- 
tion in problem (1.1)-(1.3) 

"c = O f t ,  q)(s) : ~p(s) /O~,  J'z : J / D ~  ( 2 . 1 )  

and having subjected it to a Fourier transform with the kernel exp(ivr), we find 

dz/d'~ 4- v~z --  iv(~z = Jz @ iv/(% 0); ( 2 . 2 )  

z IT=o = ~ B (r) exp (ivr) dr ~ Bz, (2. 3) 

0 

where 
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z ---- 7 / (~' r) exp (ivr) dr, i = V------l. 
0 

The solution of Eq. (2.2), with condition (2.3), has the form 

( / z ---- B 1 -6 ~ (J1 + iv/(~,rO)) exp [v~ - -  ivl (~)] d~ exp [ivl ('~) - -  v2~],, ( 2 . 4 )  
o 

where  t h e  f u n c t i o n  7. i s  g i v e n  by t h e  e q u a t i o n  and i n i t i a l  c o n d i t i o n s  

dl/d~ = ~(s), l(O) = O. (2 .5)  

I t  i s  e a s y  to  s e e  t h a t  t h e  f u n c t i o n  f i s  d e t e r m i n e d  by the  f o r m u l a  

S f = ~- Heal z e x p ( - - i v r ) d v .  (2.6) 

0 

Hav in g  i n t e g r a t e d  ( 2 . 6 )  w i t h  a l l o w a n c e  f o r  ( 2 . 4 ) ,  we o b t a i n  an e x p r e s s i o n  f o r  t h e  d i s t r i b u -  
t i o n  f u n c t i o n  

0 

+ l~Jl[S(~)]exp(.--[l(~--~(~-~)--r]~}d~-- (2 7) 

,g 

1 y [1 - -  l - -  rl 4] /~  f(~,O) (~)(~_g)~/~(~) ex-f--[l(~)--l(~)--rl~lde.p~ "-$~---'D ~ ~ 
0 

With r approaching zero in (2.7), we obtain an equation for f(z, 0): 

oo 

] (T, 0) = 2 -~h'~ B (~) exp {-- [l (~) + ~p/4z) d~ + 
0 

+ ~ ~ exp 

4 ~ / F  / (~' 0) [~ ( t ) -  z (g)] f--  [~ (~)-- DI~ (~_  ~)a/2 exp ~ ~ - - - -  d~. 
0 

(2.8) 

Having calculated the third initial moment M3 of the function f, determining the mass of the 
p a r t i c l e s  and c o n n e c t e d  w i t h  s u p e r s a t u r a t i o n  s by t h e  e q u a t i o n  

s = q(O -- M3) (2.9) 

(q and  Q a r e  c o n s t a n t s ) ,  we o b t a i n  t h e  e q u a t i o n  

Ma -- S ]r~dr = ~ J :  (s) {[l (~) - -  l (~)]3 _ 
0 0 

--6 [l (T} - -  1 (~)] (~ - -  ~)} d~ q-3 # ] (~, 0) 1[/(~) - -  ( 2 . 10 )  
0 

co 

- -  l (~)1~ - -  2 (~ - -  ~ ) } d ~  + S B (r) {6~ [l (~) - -  r] + [/(~) - -  r] 8} dr. 
0 

Thus, the unknown functions f(r, 0), M~(z), l(T) are determined by solving system (2.5), (2.8)- 
(2.10). After this system is solved, the sought function f is found from Eq. (2.7). If in Eqs. 
(2.5), (2.8)-(2.10) we pass to the limit with D r § 0, we obtain the familiar relations in [8]. 

It is generally very difficult to find an analytical solution for system (2.5), (2.8)- 
(2.10). Nevertheless, Eq. (i.I) allows a broad set of exact solutions which may prove suffi- 
cient to obtain an approximate solution to practical problems. 

900 



3. We will seek to solve Eq. (i.i) in the form 

] = ~] Qi[(x) exp ( -  ~,ir),, ~i = const > O. (3 .1 )  
i=1 

Inserting Eq. (3.1) into (i.i) and equating to zero the functions dependent on T with 

each multiplier exp(-~ir), we obtain 

de, [z,q~ (~) + z~] O, = o,, ~ = i, 2 . . . .  

d ' I  " ' 

We calculate the third moment of the function f: 

(3 .2 )  

(3.3) 

We take one equation, such as the first, from system (3.2) and write it in the form 

%1 dQ~ %{ dQ1 Ll~i (~i - -  ~,J. (3 .4 )  
q i  dT Qx d'~ = 

Having integrated system (3.4), we find 

Q~I = c~ql exp [~A1 (h --  ;<1) "~1,~ (3 .5 )  
where C i are constants of integration. Thus, we have determined the relationship between all 
of the functions Qi and the single function QI. With allowance for (3.5), the expression of 
(3.3) takes the form 

oo 

M3 = 6 E C~Q~ {m e~p [h~ (~ - h ) ] /~ .  (3 .6)  
q,=l 

Inserting (3.6) into (2.9), we determine the relation s(Q~). Having integrated the first equa- 
tion of system (3.2), we find 

�9 = y {Lxq) [s (QJl + ~,[}-~qf'dQ~. (3 .7 )  

Equations (3.7) and (3.5) determine the sought functions Qi in an expansion of (3.1). 

Solutions of the form (3.1) can be used as test solutions in realizing different numeri- 
cal and approximate algorithms for solving problems not included in the family (3.1). Also, by 
using several functions from the set (3.1) and varying the constants li and Qi, it is possible 
to approximate initial and boundary conditions and thereby obtain approximate solutions to 
more complex problems. It should be noted that, besides discrete terms of the form Qi(T) 

b 

exp(--lir) , it is possible to use a continuous distribution of the form jexp(--~r)Q~(~)d~. How- 
ever, if we are concerned with approximating an exact solution, the discrete terms will be 
quite sufficient in view of the fact that the function B(r) is practically nontrivial only in 
a finite interval. 

Equations (3.2) show that if Qi > 0 at the initial moment of time, then Qi will subse- 
quently increase, and a steady-state solution to the problem (with T§ will be possible if 
the function ~(s) becomes negative, i.e., if in the final stage of the process the crystals grow 
only as a result of fluctuations in growth rate and dissolve as a result of the convective 
term in (i.i). The concentration of the carrier phase becomes less than the equilibrium value, 
i.e., supersaturation will be negative. 

The mechanism of the dependence of D r on the parameters of the process has been studied 
little. In [6] the coefficient D r was related to the rate of turbulent mixing in processing 
units, while in [5] the relation D r = Dorg(s) was used. The latter formula leads to a zero 
value of the coefficient D r with zero supersaturation and, thus, in the limit T § ~ no tran- 
sition to negative supersaturation occurs. A constant value of D r evidently cannot serve 
as a good approximation for the entire duration of the process and must be corrected as s § 0. 

4. In connection with the foregoing, we will examine the process of mass crystallization, 
having followed an approach similar to [5] and taken 

D r = D~r v(~ r) = (a J- br)9(s). (4 .1 )  

Here, Eq. (i.i) and auxiliary conditions (1.2)-(1.3) take the following form, with allowance for 
(2.5) 
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a/ 0 0(0f) 
O~-~r [(a -~br)]]--D0~ r r~r ; (4.2) 

1(0, r) = B(r); ( 4 . 3 )  

/I~=0 -- F(s)/a, 11~-~| -+ O, (4.4) 

where F(s) = J(s)/~(s) is the supersaturation function. Formulation of the complete problem 
requires determination of the relation s(1), which connects the function F with the variable 
I. To determine this relation, we change over from Eq. (4.2) to a system of ordinary differ- 
ential equations 

dMo/dl = f[s(M3)] ,  d M , J d l -  nbM,, = n(a + nDo)M,,_l~ ( 4 . 5 )  
c o  

w h e r e  Mn = j r'~fdr, n---- 0, i ,  2, 3. S y s t e m  ( 4 . 5 )  i s  c l o s e d  by  Eq.  ( 2 . 9 ) .  
0 

W i t h  t h e  c o n d i t i o n  o f  a l i n e a r  r e l a t i o n  F ( M 3 ) ,  s y s t e m  ( 4 . 5 )  w i l l  b e  l i n e a r  a n d  e a s i l y  
s o l v a b l e  b y  s t a n d a r d  m e t h o d s .  I n  p r a c t i c e ,  t h e  f u n c t i o n  F c a n  o f t e n  b e  l i n e a r i z e d  i n  two 
o r  t h r e e  s e c t i o n s  and  a s o l u t i o n  c a n  b e  o b t a i n e d  f o r  e a c h  s e c t i o n .  T h i s  p r o c e d u r e  was f o l -  
l o w e d  i n  [8 ]  w i t h  Do = 0 ,  b = 0.  As a r e s u l t  o f  s o l u t i o n  o f  s y s t e m  ( 4 . 5 ) ,  we d e t e r m i n e  t h e  
r e l a t i o n  s ( 1 )  w h i c h ,  a f t e r  s u b s t i t u t i o n  i n t o  b o u n d a r y  c o n d i t i o n  ( 4 . 4 ) ,  g i v e s  t h e  s o u g h t  r e l a -  
t i o n  F [ s ( 1 ) ] ,  a n d  p r o b l e m  ( 4 . 2 ) - ( 4 . 4 )  b e c o m e s  f u l l y  s t a t e d .  

We make  t h e  f o l l o w i n g  s u b s t i t u t i o n  i n  ( 4 . 2 ) - ( 4 . 4 )  

h = bl, a = a/Do, x = br/D,, g = ] e x p  h. ( 4 . 6 )  

W i t h  a l l o w a n c e  f o r  ( 4 . 6 ) ,  p r o b l e m  ( 4 . 2 ) - ( 4 . 4 )  b e c o m e s  

Og/Oh = xO2g/Ox ~ -~- ( i  - -  c~ - -  x)Og/Ox; ( 4 . 7 )  

glh=0 = B*(x); ( 4 . 8 )  

g]x=0 = F(h) exp h/a, glx~,| --+ O. ( 4 . 9 )  

( 4 . 7 )  i n  t h e  f o r m  g = g~ + g 2 ,  w h e r e  g~ i s  a p a r t i c u l a r  s o l u t i o n  o f  We will seek to solve Eq. 
Eq. (4.7) satisfying condition (4.8). Noting that Eq. (4.7) has a set of particular solutions 
of the form 

L~ ~ (x) exp (-- kh), k = O, i, 2 . . . . . .  

w h e r e  Lk a a r e  L a g u e r r e  p o l y n o m i a l s ,  we w i l l  s e e k  t h e  f u n c t i o n  g~ i n  t h e  f o r m  o f  a s e r i e s  

gx = ~ Ak L-2: (x) exp ( - -  kh). ( 4 . 1 0 )  
h = 0  

Having determined the coefficients A k in (4.10) by expansion of the function B*(x) into a 
series in the polynomials L~ a, we obtain 

oo 

g l =  ~-- r ( k - - ~  + t) j ~ - r  ( 4 . 1 1 )  
h=O 0 

F is a gamma function. Having changed the order of integration and summation in (4.11) and 
using expressions for the generating function of Laguerre polynomials [9], we finally obtain 

oo 

i ~ ( i - ~ - - ~ ) I _ c ~ ( ~ - ) d ~ ,  (4.12) gl = ~ (~)-~ B* (~) exp 
0 

I _ ~  i s  a m o d i f i e d  B e s s e l  f u n c t i o n ,  m = 1 --  exp  h ,  B = / x ~ e x p ( - - h ) .  F o r m a l l y  o b t a i n e d  s o l u t i o n  
( 4 . 1 2 )  c a n  b e  s u b s t a n t i a t e d  b y  a m e t h o d  s i m i l a r  t o  t h a t  u s e d  i n  [ 1 0 ] ,  f o r  e x a m p l e .  T h u s ,  
p r o b l e m  ( 4 . 7 ) - ( 4 . 9 )  r e d u c e s  t o a  p r o b l e m  r e l a t i v e  t o  t h e  f u n c t i o n  g2 w h i c h  i s  h o m o g e n e o u s  w i t h  
r e s p e c t  t o  t h e  v a r i a b l e  h .  The b o u n d a r y  c o n d i t i o n  w i l l  b e  a s  f o l l o w s :  

g2(h, O) : F(h) exp h/a - -  g~(h,~ O) -.~ F*(h). ( 4 . 1 3 )  

We will construct the solution of the above homogeneous problem in the form of the con- 
volution F*(h) and g3, where g3 is the particular solution of Eq. (4.7) with the auxiliary 
conditions 

ga(O, x) : NS(x  -Jr 0), ga(h, O) = O, (4.14) 
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which describe the process of crystallization without nucleation on N seeds of negligibly 
small size. 

Subjecting Eq. (4.7) to a Laplace transform with respect to the variable h and solving 

the resulting equation, we find the following expression for the mapping of the function g3: 

g3 = NF(p + a)G(p, I - -  a, x)/F(t ~- ~)~ ( 4 . 1 5 )  

- S ga where  ga = e x p ( - - h p ) d p ;  G i s  a d e g e n e r a t e  h y p e r g e o m e t r i c  f u n c t i o n  of  t h e  s e c o n d  k i n d .  I n -  
0 

v e r t i n g  Eq. ( 4 . 1 5 )  by means o f  t h e  R iemann- -Ne l l i n  f o r m u l a  and u s i n g  w e l l - k n o w n  f o r m u l a s  l i n k -  
ing  d e g e n e r a t e  h y p e r g e o m e t r i c  f u n c t i o n s  and L a g u e r r e  p o l y n o m i a l s ,  we o b t a i n  

- - (x) e x p  ( -  kh) .  ( 4 . 1 6 )  

S e r i e s  ( 4 . 16 )  can  be  summed by u s i n g  t h e  e x p r e s s i o n  f o r  the  g e n e r a t i n g  f u n c t i o n  W o f  L a g u e r r e  
p o l y n o m i a l s  [9 ] :  

W ( x , g ) - ~ ( t - - g ) e - I e x P  ~ = ( 4 . 1 7 )  
h=0  

With a l l o w a n c e  f o r  ( 4 . 1 7 ) ,  t h e  f i n a l  e x p r e s s i o n  f o r  t he  f u n c t i o n  g3 i s  

ga ~ r ( l - - ~ )  ~W(x ,  e x p h ) +  - -  . ( 4 . 1 8 )  

Now l e t  us p r o c e e d  t o  t h e  c o n s t r u c t i o n  o f  t h e  f u n c t i o n  g2,  which  s a t i s f i e s  Eq. ( 4 . 7 )  
and homogeneous  i n i t i a l  and b o u n d a r y  c o n d i t i o n  ( 4 . 1 3 ) .  As b e f o r e  h a v i n g  s u b j e c t e d  Eq. ( 4 . 7 )  
and condition (4.13) to the Laplace transform and having solved the resulting equation, we 
find 

g2 = F*(p)G(p, t - -  a,  x)P(p § a ) / r ( a ) ,  ( 4 . 1 9 )  

g2 and F* a r e  t h e  m app i ngs  o f  t h e  f u n c t i o n s  g= and F*,  r e s p e c t i v e l y .  R e p r e s e n t i n g  Eq. ( 4 . 1 9 )  
in the form of the product of two functions F*(p) and ~g3(p)/N, we obtain an expression for 
the function g2 in the form of the convolution 

h 

J F *  (h - -  ~) ga (~, x) d~. ( 4 . 2 0 )  g 2 = ~  
0 

Thus ,  w i t h  a l l o w a n c e  f o r  Eqs .  ( 4 . 6 ) ,  t h e  sum o f  Eqs.  ( 4 . 1 2 )  and (4 . 20 )  i s  t h e  s o l u t i o n  
o f  p r o b l e m  ( 4 . 2 ) - ( 4 . 4 ) .  

5. We can follow the effect of fluctuations in particle growth rate on the progress of 
crystallization by comparing the solutions of Eq. (4.2) with Do # 0 and Do = O, when the dis- 
tribution function has the form of a 6-function at the initial moment of time and nucleation 
is absent. In the case Do # O, the solution of Eq. (4.2) is Eq. (4.18). In the second case~ 
it is the expression 

] = bNS[a + br --  a exp (bl)],, ( 5 . 1 )  

which is easily obtained from Eq. (4.2) with Do = 0 by the method of characteristics, for ex- 
ample, using the homogeneity property of the delta function. Figure 1 qualitatively shows 
the dynamics over time of the distribution functions for these two cases. Curves 1 and 3 cor- 
respond to the function (5.1) at the moments of time t~ and t= (t2 > t~), while curves 2 and 
4 correspond to the function (4.18) for the same moments of time. 

In the case Do = 0 function (5.1) moves along the r axis without distortion at a certain 
variable rate determined by Eqs. (2.9) and (2.5). A finite value of Do leads to blurrlng 
of the curve of distribution function (4.18). This blurring is also affected by the convec- 
tive term in (4.2) due to the different rates of growth of crystals of different radii. It 
should be noted that the latter mechanism was absent when Do = 0 only because of the selec- 
tion of the initial distribution in the form of a delta function. 

The effect of growth rate fluctuations is also manifest in a certain shift in the maxi- 
mum of the curve. This effect is manifest in the present nonlinear problem in two ways: both 
in Eq. (4.2), where Do is a parameter, and in Eqs. (4.5), (2.9), and (2.5), where Do affects 
the deformation of time. 
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Fig. i 

With an increase in the value of Do, the degree of blurring of the distribution curves 
(4.18) increases. 
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